Data collection

Siemens P4 diffractometer ω scans
Absorption correction: none 3496 measured reflections 3269 independent reflections
2633 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.015$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.085$
$S=1.062$
3268 reflections
273 parameters
H atoms: see below
$\theta_{\text {max }}=25^{\circ}$
$h=-24 \rightarrow 24$
$k=-11 \rightarrow 0$
$l=0 \rightarrow 10$
3 standard reflections every 97 reflections intensity decay: 1%
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.048 P)^{2}\right.$
$+0.616 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\text {max }}=0.186 \mathrm{e}^{-3}$
$\Delta \rho_{\text {max }}=0.186 \mathrm{e}^{2} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.305 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O12—H12O $\cdots \mathrm{N} 11 A$	0.84	1.995	$2.830(2)$	175
O15—H150 $\mathrm{N} 11 B^{1}$	0.84	2.004	$2.826(2)$	167
N10A—H10A $\cdots \mathrm{N} 8 A^{11}$	0.86	1.996	$2.844(2)$	167
N10B—H10B $\cdots \mathrm{N} 8 B^{\mathrm{iii}}$	0.87	2.001	$2.845(2)$	162

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (iii) $-x, \frac{1}{2}+y,-\frac{1}{2}-z$.

H atoms were placed in idealized positions and refined as riding.

Data collection: XSCANS (Fait, 1993). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTLPC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1258). Services for accessing these data are described at the back of the journal.

References

Buchanan, B. E., Vos, J. G., Kaneko, M., van der Putten, W. J. M., Kelly, J. M., Hage, R., de Graaff, R. A. G., Prins, R., Haasnoot, J. G. \& Reedijk, J. (1990). J. Chem. Soc. Dalton Trans. pp. 2425-2431.
Fait, J. (1993). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Hage, R., Haasnoot, J. G., Nieuwenhuis, H. A., Reedijk, J., de Ridder, D. J. A. \& Vos, J. G. (1990). J. Am. Chem. Soc. 112, 9245-9252.

Hage, R., Haasnoot, J. G., Reedijk, J., Turkenberg, J. P. \& de Graaf, R. A. G. (1989). Acta Cryst. C45, 381-383.

Nieuwenhuyzen, M., Keyes, T. E., Gallagher, J. F. \& Vos, J. G. (1997). Acta Cryst. C53, 1873-1875.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC. An Integrated System for Data Collection, Processing, Structure Solution and Refinement. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Uda, M., Hisazumi, G., Sato, K. \& Kubota, S. (1976). Chem. Pharm. Bull. 24, 3103-3105.

Acta Cryst. (1999). C55, 266-268

Isoavarol diacetate

Sergey G. Ilyin, ${ }^{a}$ Larisa K. Shubina, ${ }^{a}$ Valentine A. Stonik ${ }^{a}$ and Michael Yu. Antipin ${ }^{b}$
${ }^{a}$ Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 159 prospekt IO0-letiya Vladivostoka, 690022 Vladivostok-22, Russian Federation, and ${ }^{b}$ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. E-mail: ilyin@piboc. marine.su

(Received 13 January 1998; accepted 18 August 1998)

Abstract

The crystal and molecular structures of isoavarol diacetate, $(1 R, 2 S, 4 \mathrm{a} S, 8 \mathrm{a} S)$-2-(1,2,4a-trimethyl-5-methyl-ene-perhydro-1-naphthylmethyl)-p-phenylene diacetate, $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$, have been determined. There are two molecules of this quinoid-containing sesquiterpene in the asymmetric unit. Each of these molecules participates in intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts between the aromatic $\mathrm{C}-\mathrm{H}$ groups and the carbonyl-O atoms of the acetyl groups. Isoavarol differs from avarol in both the exocyclic position of the double bond at C 4 and the chair conformation of ring A. The acetyl groups in each molecule of the title compound are oriented on one side of the phenylene ring, on opposite sides of the bicyclic system of the molecule.

Comment

Isoavarol, a sesquiterpene hydroquinone isomer of the well known compound avarol (De Rosa et al., 1976), has been isolated from the Pacific sponge Dysidea $s p$. and its structure, including its absolute configuration, has been studied using spectroscopic and chemical correlative methods (Shubina et al., 1990). Simultaneously, the same compound was obtained from the Okinawian Dysidea (Iguchi et al., 1990) and named as neoavarol. Current interest in structural investigations on isoavarol and its derivatives is stimulated by the high and diverse biological activities of avarol itself, as well as of some related prenylated sesquiterpene quinones (Müller et al., 1987; De Giulio et al., 1990; Pennings et al., 1994).

Recently, crystal structures of avarol (Puliti et al., 1994) and its diacetate (Puliti et al., 1995) have been reported, but an X-ray analysis of isoavarol and its derivatives has not previously been reported. Certain long range effects are characteristic of natural products belonging to this series; for instance, a substitution of the hydroxyl group at C 4 in illimaquinone results in the rotation of the aromatic residues around the C9C15 bond (Ilyin et al., 1991). To elucidate the spatial
structure of isoavarol, the X-ray analysis of isoavarol diacetate, (I), was carried out.

(I)

A perspective view of the final X-ray model of the two molecules of (I) is shown in Fig. 1. The two molecules are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in an asymmetric unit. Ring A in (I) is in a chair conformation, and there is an exocyclic double bond. Ring B has a chair form, analogous to the conformation found in avarol diacetate, (II) (Puliti et al., 1995): C9

Fig. 1. A perspective view of the two molecules of (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts together with the atom-numbering scheme for the non-H atoms. Displacement ellipsoids are plotted at the 30% probability level and \mathbf{H} atoms are drawn as spheres of an arbitrary radius.
deviates by 0.568 (3) and C6 by -0.685 (3) A from the C7/C8/C5/C10 plane. The orientations of the aromatic rings relative to ring B are similar in (I) and (II). The $\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}-\mathrm{C}^{\prime} 5^{\prime}-\mathrm{Cl}^{\prime}$ torsion angle has a value of $59.8(2)^{\circ}$ in (I), which is smaller than the $63.3(3)^{\circ}$ found in (II). The corresponding torsion angles around the $\mathrm{C} 15-\mathrm{C} 16$ and $\mathrm{C} 15^{\prime}-\mathrm{C}^{\prime} 6^{\prime}$ bonds differ from each other more than they do from the value of $-96.2(3)^{\circ}$ in (II). In (II), the acetyl groups are oriented on opposite sides of the phenylene ring, whilst in each of the two molecules of (I) they are oriented on the same side of the ring, on opposite sides of the bicyclic system. The $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$ bond lengths differ by $0.035 \AA$.
The important intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts for both independent molecules of (I) are given in Table 2. The molecules form hydrogen bonds of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type, giving infinite chains.

Experimental

The title compound was obtained by acetylation of a mixture of avarol and isoavarol, isolated from the marine sponge Dysidea $s p$. This was followed by sequential separation. Slow evaporation from an ethanol solution yielded crystals suitable for X-ray analysis.

Crystal data
$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$
$M_{r}=398.52$
Monoclinic
$P 2_{1}$
$a=6.462$ (1) \AA
$b=33.014$ (7) \AA
$c=10.457(2) \AA$
$\beta=93.30$ (3) ${ }^{\circ}$
$V=2227.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.189 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Syntex $P 2_{1}$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
4113 measured reflections
3722 independent reflections
3195 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.026$

Refinement

Refinement on F^{2}
$R=0.050$
$w R=0.066$
$S=3.385$
3722 reflections
539 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 24 reflections
$\theta=11-13^{\circ}$
$\mu=0.079 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Prism
$0.42 \times 0.25 \times 0.10 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=27.06^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 42$
$l=-13 \rightarrow 13$
2 standard reflections every 100 reflections intensity decay: 2.8%

Extinction correction: SHELXL93
(Sheldrick, 1993)
Extinction coefficient: 0.00468 (6)

Scattering factors from International Tables for Crystallography (Vol. C)

```
\((\Delta / \sigma)_{\max }=0.095\)
\(\Delta \rho_{\text {max }}=0.408 \mathrm{e}^{-3}\)
\(\Delta \rho_{\text {min }}=-0.400 \mathrm{e}^{-3}\)
```

Absolute structure: assigned according to Shubina et al. (1990)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

C2-C3	1.537 (3)	$\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3^{\prime}$	1.502 (3)
C9-C10	1.584 (2)	$\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}$	1.574 (2)
C9-C15	1.573 (3)	$\mathrm{C} 9^{\prime}-\mathrm{C} 15^{\prime}$	1.580 (3)
C18-C17-C16	C16 123.9 (2)	$\mathrm{C} 18^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 16^{\prime}$	124.7 (2)
$\mathrm{Cl} 8-\mathrm{Cl} 7-\mathrm{Ol}$	$\mathrm{O} 17 \quad 117.6$ (2)	$\mathrm{C1} 8^{\prime}-\mathrm{Cl7}^{\prime}-\mathrm{Ol7}^{\prime}$	119.1 (2)
$\mathrm{C1} 6-\mathrm{Cl} 7-\mathrm{O} 17$	$017 \quad 118.5$ (2)	$\mathrm{C16}{ }^{\prime}-\mathrm{Cl7}^{\prime}-\mathrm{O} 17{ }^{\prime}$	116.0 (2)
$\mathrm{C} 24-\mathrm{O} 20-\mathrm{C} 20$	C20 119.1 (1)	$\mathrm{C} 24^{\prime}-\mathrm{O} 20^{\prime}-\mathrm{C} 20^{\prime}$	116.3 (1)
$\mathrm{C} 9-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$		-99.8	
C18-C17-O17-C22			
$\mathrm{Cl} 6-\mathrm{C17-O17-C22}$		-109.5	
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{O} 20-\mathrm{C} 24$		128.	
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{O} 20-\mathrm{C} 24$		-54.3	
$\mathrm{C} 8^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 15^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$			
$\mathrm{C} 9^{\prime}-\mathrm{C} 15^{\prime}-\mathrm{C} 16^{\prime}-\mathrm{C} 17^{\prime}$		-95.9	
$\mathrm{C} 18^{\prime}-\mathrm{Cl7}^{\prime}-\mathrm{O} 17^{\prime}-\mathrm{C} 22^{\prime}$			
$\mathrm{C} 16^{\prime}-\mathrm{C} 17^{\prime}-\mathrm{O} 17^{\prime}-\mathrm{C} 22^{\prime}$		-122.7	
$\mathrm{C} 21^{\prime}-\mathrm{C} 20^{\prime}-\mathrm{O} 20^{\prime}-\mathrm{C} 24^{\prime}$		116.	
$\mathrm{C} 19^{\prime}-\mathrm{C} 20^{\prime}-\mathrm{O} 20^{\prime}-\mathrm{C} 24^{\prime}$		-67.	

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	D-H	H \cdot. A	D...	D-H. \cdot A
C8-H8A.. O 17	0.96	2.84	3.343 (2)	114
C13-H13A...O17	0.96	2.46	3.124 (3)	126
C15-H15B..O17	0.96	2.49	2.891 (2)	105
C15-H15B...O24'	0.96	2.77	3.318 (2)	117
C19-H19.. O 24	1.15 (2)	2.48 (2)	2.939 (3)	102 (1)
C8'-H8B. . $\mathrm{Ol}^{\prime}{ }^{\prime}$	0.96	2.65	3.193 (3)	116
C13'-H13E . OO17 ${ }^{\prime}$	0.96	2.37	3.049 (3)	128
C15'-H15C.. O17 ${ }^{\prime}$	0.96	2.48	2.858 (2)	103
C18'-H18 ${ }^{\prime}$. . O24	1.07 (2)	2.34 (2)	3.380 (2)	163 (1)
C18 ${ }^{\prime}$ - $\mathrm{H} 18^{\prime} \ldots . \mathrm{O} 22^{\prime}$	1.07 (2)	2.81 (2)	2.952 (2)	86.7 (9)
C19'-H19'...O22	0.95 (2)	2.47 (2)	3.345 (3)	153 (1)
C19'-H19'. . O22 ${ }^{\prime}$	0.95 (2)	3.00 (2)	3.029 (3)	83 (1)
C18-H18...O24 ${ }^{\text {i }}$	0.90 (2)	2.52 (2)	3.353 (2)	155 (1)
C19-H19...O22 ${ }^{\text {i }}$	1.15 (2)	2.23 (2)	3.320 (3)	158 (2)

Symmetry code: (i) $x-1, y, z$.
The H atoms were located on the basis of geometrical considerations and difference Fourier map suggestions (for the methyl groups). Atoms H18, H19, H18 ${ }^{\prime}$ and H19' were included in the refinement with isotropic displacement parameters. All other H atoms were included as fixed atoms, with isotropic displacement parameters set equal to $1.2 U_{\mathrm{eq}}\left(1.5 U_{\mathrm{eq}}\right.$ for methyl groups) of the parent atoms. The absolute configuration was assigned in accordance with that established previously by Shubina et al. (1990).
Data collection: P2 Diffractometer Program (Syntex, 1975). Cell refinement: $P 2_{1}$ Diffractometer Program. Data reduction: XDISK (SHELXTL/PC; Sheldrick, 1991). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP in SHELXTL/PC. Software used to prepare material for publication: CIFTAB in SHELXL93.

The authors are grateful to Dr A. I. Yanovsky for his help in this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1024). Services for accessing these data are described at the back of the journal.

References

De Giulio, A., De Rosa, S., Di Vincenzo, G. \& Strazzullo, G. (1990). Tetrahedron, 46, 7971-7976, and references therein.
De Rosa, S., Minale, I.., Riccio, R. \& Sodano, G. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 1408-1414.
Iguchi, K., Sahashi, A., Kohno, J. \& Yamada, Y. (1990). Chem. Pharm. Bull. 38, 1121-1123.
Ilyin, S. G., Stchedrin, A. P., Rebachuk, N. M., Fedoreyev, S. A. \& Struchkov, Yu. T. (1991). Khim. Prir. Soedin. pp. 467-471.
Müller, W. E. G., Sobel, C., Diehl-Seifert, B., Maidhof, A. \& Schröder, H. C. (1987). Biochem. Pharmacol. 36, 1489-1494, and references therein.
Pennings, S. C., Pablo, S. R., Paul, V. J. \& Duffy, J. E. (1994). J. Exp. Mar. Biol. Ecol. 180, 137-149.
Puliti, R., De Rosa, S. \& Mattia, C. A. (1994). Acta Cryst. C50, 830-833.
Puliti, R., De Rosa, S. \& Mattia, C. A. (1995). Acta Cryst. C51, 2163-2166.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTLIPC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cnistal Structures. University of Göttingen, Germany.
Shubina, L. K., Fedorov, S. N., Stonik, V. A., Dmitrenok, A. S. \& Isakov, V. V. (1990). Khim. Prir. Soedin. pp. 358-361.
Syntex (1975). P2 1_{1} Diffractometer Program. Version 1.0. Syntex Analytical Instruments, Cupertino, California, USA.

Acta Cryst. (1999). C55, 268-270

2-Benzyl-2-hydroxycyclohexanone

Kevin J. McCullough, Iris Perner and Georgina M. Rosair

Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland. E-mail: k.j.mccullough@hw. ac.uk
(Received 30 September 1998; accepted 23 October 1998)

Abstract

In the solid state, the title compound $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}\right)$ exists as dimers related by a centre of inversion and linked by two equivalent hydrogen bonds $\mathrm{Ol} \cdots \mathrm{H} 2(-x, 2-y$, $1-z$) [2.021 (3) \AA]. The carbonyl- and hydroxyl-group O atoms attached to the cyclohexyl ring are almost eclipsed [O2-C2-Cl-O1 $\left.18.5(3)^{\circ}\right]$.

Comment

Treatment of 2-hydroxycyclohexanone with sodium hydride and benzyl bromide in tetrahydrofuran afforded the highly crystalline title compound, (1), rather than

